Surface Analysis of Ca₃Ru₂O₇ M. Menhart, U. Diebold, M. Schmid #### Introduction Project work and introduction for the diploma thesis on surface science Original aim: surface analysis of the Ruddlesden-Popper perovskites: $(Sr_{1-x}Ca_x)Ru_2O_7$ x ranging from 0 to 1 Reduced to analysis of Ca₃Ru₂O₇ #### **Basic Perovskite Structure** - Perovskite: CaTiO₃ - ABX₃ Structure - A: white, B: green, X: red - Wide range in physical properties - Variety of applications #### Ruddlesden-Popper Series - \bullet A_{n-1} A '₂ B_n X_{3n+1} - n: layers of octahedra in the perovskite stack - Consists of perovskite layes and rock salt type layers - Our Samples: A₃B₂X₇ - A: green, B: blue, X: red ## Sample preparation - Very reaktive surface - Usual sample preparation methods (sputtering, annealing) don't work a) - Cleaving in UHV and scanning immediatley afterwards - Glueing the sample to the sample holder - Glueing a stub on top of the sample - Knocking off the stub ## Glueing - Glues - Epo-Tek H77 - Epo-Tek H21D silver glue - Difficulties: - Position on the sample holder - Catching the stubs - Conductivity - Hardness of the glue ## Glueing Approaches - H77, silver glue contacts on the sides - Time consuming (3 curing steps) - Conductivity no reliable - H77, roughen sample holder with center punch - Conductivity no reliable - Only silver glue - Hardness not garanteed - Silver glue between sample and sampleholder H77 between sample and stub #### Ca₃Ru₂O₇ lattice - Reconstructed Ca₃Ru₂O₇ lattice (Data: Yoshida et al., PRB, 72(5):054412) - Virtually cleaved with CrystalMaker - Square lattice # LEED of Ca₃Ru₂O₇ LEED confirmed the square lattice ## STM of Ca₃Ru₂O₇ - Wide flat areas - Cracks - Bright features - Seem to increase over time - Very difficult to obtain good STM images - Unstable tip - Fast surface contamination 100x100 nm², -1.2 V, 0.1 nA #### **Atomic Resolution** - Large bright features - Voids - Lattice of 0.58 nm in one direction, 0.66 nm and an angle of 120° between - No square lattice - Adsorbate 20x20 nm², -1.2 V, 0.35 nA # Dosing of CO₂ and O₂ - LEED 100 eV 90 eV undosed $100 \, \text{eV}$ $90 \, \text{eV}$ CO_2 O_2 dosed No difference # Dosing of CO₂ and O₂ - STM - Difficult to compare - No obvious effect # Thank you